百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python数据清洗(三):异常值识别与处理

off999 2024-11-19 08:36 67 浏览 0 评论

作者 | 刘顺祥

来源 | 数据分析1480

在《Python数据清洗(一):类型转换和冗余数据删除》和《Python数据清洗(二):缺失值识别与处理》文中已经讲解了有关数据中重复观测和缺失值的识别与处理,在本节中将分享异常值的判断和处理方法。

异常值也称为离群点,就是那些远离绝大多数样本点的特殊群体,通常这样的数据点在数据集中都表现出不合理的特性。如果忽视这些异常值,在某些建模场景下就会导致结论的错误(如线性回归模型、K均值聚类等),所以在数据的探索过程中,有必要识别出这些异常值并处理好它们。

异常值的识别

通常,异常值的识别可以借助于图形法(如箱线图、正态分布图)和建模法(如线性回归、聚类算法、K近邻算法),在本期内容中,将分享两种图形法,在下一期将分享基于模型识别异常值的方法。

箱线图法

箱线图技术实际上就是利用数据的分位数识别其中的异常点,该图形属于典型的统计图形,在学术界和工业界都得到广泛的应用。箱线图的形状特征如下图所示:

图中的下四分位数指的是数据的25%分位点所对应的值(Q1);中位数即为数据的50%分位点所对应的值(Q2);上四分位数则为数据的75%分位点所对应的值(Q3);上须的计算公式为Q3+1.5(Q3-Q1);下须的计算公式为Q1-1.5(Q3-Q1)。其中,Q3-Q1表示四分位差。如果采用箱线图识别异常值,其判断标准是,当变量的数据值大于箱线图的上须或者小于箱线图的下须时,就可以认为这样的数据点为异常点。

所以,基于上方的箱线图,可以定义某个数值型变量中的异常点和极端异常点,它们的判断表达式如下表所示:

在Python中可以使用matplotlib模块实现数据的可视化,其中boxplot函数就是用于绘制箱线图的。下面以1700年至1988年太阳黑子数量的数据为例,利用箱线图法识别数据中的异常点和极端异常点。具体的代码如下:

# 导入第三方模块
import pandas as pd
import matplotlib.pyplot as plt

# 导入数据
sunspots = pd.read_csv(r'C:\Users\Administrator\Desktop\sunspots.csv')
# 绘制箱线图(1.5倍的四分位差,如需绘制3倍的四分位差,只需调整whis参数)
plt.boxplot(x = sunspots.counts, # 指定绘制箱线图的数据
 whis = 1.5, # 指定1.5倍的四分位差
 widths = 0.7, # 指定箱线图的宽度为0.8
 patch_artist = True, # 指定需要填充箱体颜色
 showmeans = True, # 指定需要显示均值
 boxprops = {'facecolor':'steelblue'}, # 指定箱体的填充色为铁蓝色
 # 指定异常点的填充色、边框色和大小
 flierprops = {'markerfacecolor':'red', 'markeredgecolor':'red', 'markersize':4}, 
 # 指定均值点的标记符号(菱形)、填充色和大小
 meanprops = {'marker':'D','markerfacecolor':'black', 'markersize':4}, 
 medianprops = {'linestyle':'--','color':'orange'}, # 指定中位数的标记符号(虚线)和颜色
 labels = [''] # 去除箱线图的x轴刻度值
 )
# 显示图形
plt.show()

如上图所示,利用matplotlib子模块pyplot中的boxplot函数可以非常方便地绘制箱线图,其中左图的上下须设定为1.5倍的四分位差,右图的上下须设定为3倍的四分位差。从左图可知,发现数据集中至少存在5个异常点,它们均在上须之上;而在右图中并没有显示极端异常点。

通过上图可以直观地发现数据中是否存在异常点或极端异常点,但无法得知哪些观测为异常点,以及这些异常点的具体数值。为解决该问题,读者可以通过下方的代码实现查询:

# 计算下四分位数和上四分位
Q1 = sunspots.counts.quantile(q = 0.25)
Q3 = sunspots.counts.quantile(q = 0.75)

# 基于1.5倍的四分位差计算上下须对应的值
low_whisker = Q1 - 1.5*(Q3 - Q1)
up_whisker = Q3 + 1.5*(Q3 - Q1)

# 寻找异常点
sunspots.counts[(sunspots.counts > up_whisker) | (sunspots.counts < low_whisker)]

正态分布图法

根据正态分布的定义可知,数据点落在偏离均值正负1倍标准差(即sigma值)内的概率为68.2%;数据点落在偏离均值正负2倍标准差内的概率为95.4%;数据点落在偏离均值正负3倍标准差内的概率为99.6%。

所以,换个角度思考上文提到的概率值,如果数据点落在偏离均值正负2倍标准差之外的概率就不足5%,它属于小概率事件,即认为这样的数据点为异常点。同理,如果数据点落在偏离均值正负3倍标准差之外的概率将会更小,可以认为这些数据点为极端异常点。为使读者直观地理解文中提到的概率值,可以查看标准正态分布的概率密度图,如下图所示:

进一步,基于上图的结论,可以按照下表中的判断条件,识别出数值型变量的异常点和极端异常点,如下表所示:

利用正态分布的知识点,结合pyplot子模块中的plot函数绘制折线图和散点图,并借助于两条水平参考线识别异常值或极端异常值。

接下来以某公司的支付转化率数据为例,使用正态分布的特性识别数据集中的异常点和极端异常点,该数据呈现的是2017年第三季度每天的支付转化率。我们利用如上介绍的plot函数,识别数据中可能存在的异常点或极端异常点。具体代码如下:

# 读入外部数据
pay_ratio = pd.read_excel(r'C:\Users\Administrator\Desktop\pay_ratio.xlsx')
# 绘制单条折线图,并在折线图的基础上添加点图
plt.plot(pay_ratio.date, # x轴数据
 pay_ratio.ratio, # y轴数据
 linestyle = '-', # 设置折线类型
 linewidth = 2, # 设置线条宽度
 color = 'steelblue', # 设置折线颜色
 marker = 'o', # 往折线图中添加圆点
 markersize = 4, # 设置点的大小
 markeredgecolor='black', # 设置点的边框色
 markerfacecolor='black') # 设置点的填充色
# 显示图形
plt.show()

# 添加上下界的水平参考线(便于判断异常点,如下判断极端异常点,只需将2改为3)
plt.axhline(y = pay_ratio.ratio.mean() - 2* pay_ratio.ratio.std(), linestyle = '--', color = 'gray')
plt.axhline(y = pay_ratio.ratio.mean() + 2* pay_ratio.ratio.std(), linestyle = '--', color = 'gray')

# 导入模块,用于日期刻度的修改(因为默认格式下的日期刻度标签并不是很友好)
import matplotlib as mpl
# 获取图的坐标信息
ax = plt.gca()
# 设置日期的显示格式 
date_format = mpl.dates.DateFormatter("%m-%d") 
ax.xaxis.set_major_formatter(date_format) 

# 设置x轴每个刻度的间隔天数
xlocator = mpl.ticker.MultipleLocator(7)
ax.xaxis.set_major_locator(xlocator)
# 为了避免x轴刻度标签的紧凑,将刻度标签旋转45度
plt.xticks(rotation=45)

如上图所示,左图中的两条水平线是偏离均值正负2倍标准差的参考线,目测有6个样本点落在参考线之外,可以判定它们属于异常点;而对于右图中偏离均值正负3倍标准差的参考线来说,仅有1个样本点落在参考线之外,即说明该样本点就是2017年第三季度的唯一极端异常点。

同理,也可以借助于下面的代码,查询出异常点所对应的水流量:

# 计算判断异常点和极端异常点的临界值
outlier_ll = pay_ratio.ratio.mean() - 2* pay_ratio.ratio.std()
outlier_ul = pay_ratio.ratio.mean() + 2* pay_ratio.ratio.std()

extreme_outlier_ll = pay_ratio.ratio.mean() - 3* pay_ratio.ratio.std()
extreme_outlier_ul = pay_ratio.ratio.mean() + 3* pay_ratio.ratio.std()

# 寻找异常点
pay_ratio.loc[(pay_ratio.ratio > outlier_ul) | (pay_ratio.ratio < outlier_ll), ['date','ratio']]
# 寻找极端异常点
pay_ratio.loc[(pay_ratio.ratio > extreme_outlier_ul) | (pay_ratio.ratio < extreme_outlier_ll), ['date','ratio']]

异常点

极端异常点

尽管基于箱线图的分位数法和基于正态分布的参考线法都可以实现异常值和极端异常值的识别,但是在实际应用中,需要有针对性的选择。如果待判断的变量近似服从正态分布,建议选择正态分布的参考线法识别异常点,否则使用分位数法识别异常点。

扫码进入CDA官方小程序,解锁更多新鲜资讯和优质内容,还有免费试听课程,不要错过哟!

相关推荐

win7重装系统后键盘鼠标没反应

方法一:使用安全模式来解决1.首先我们尝试重启电脑,按关机键几款重启,如果重启电脑没有效果的话,将电脑鼠标的接头重新换一个USB接头即可。2.接着再开机按F8键(这时键盘肯定能用),再到高级启动选项下...

4g网速最快的apn接入点(4g哪个接入点快)

中国联通网速最快最稳的APN是3gnet。联通4G卡APN接入点应该选择“3gnet”,具体设置步骤如下:1、以MIUI系统为例,点击桌面上的“设置”应用图标;2、在打开的设置应用界面中,选择“双卡和...

支付宝注册(支付宝注册地址)
  • 支付宝注册(支付宝注册地址)
  • 支付宝注册(支付宝注册地址)
  • 支付宝注册(支付宝注册地址)
  • 支付宝注册(支付宝注册地址)
linux软件大全(linux相关软件)

Airtime-Airtime是一款用于调度和远程站点管理的开放广播软件Ardour-在Linux上录音,编辑,和混音Audacious-开源音频播放器,按你想要的方式播放你的音乐,...

什么是网络交换机(什么是网络交换机的作用)

交换机(又名交换式集线器)作用与集线器大体相同,可以简单的理解为将一些机器连接起来组成一个局域网,而每台机器还能独享带宽。原理:MAC地址通常由网卡(NIC)决定,并且每个网卡、交换机和路由器的每个端...

wifi热点精灵下载(下载wifi精灵怎么样)

启动你好,解决方法一这是网卡IP的设置问题,看下上网的那个网卡有没有“共享”或者看下网络连接列表里有没有“已共享”字样,取消共享:电脑右下角右击“打开网络和共享中心”-----点击“更改适配器”-...

win7游戏版系统(win7游戏专用版)

具体方法:1、进入win7桌面,右键单击桌面上的计算机图标,选择要打开的属性,然后进入下一步。2、点击系统属性界面左侧的“高级系统设置”进入下一步。3、切换到弹出系统属性界面的“高级”选项,点击性能选...

win7如何查看隐藏文件(win7打开隐藏的文件夹)
win7如何查看隐藏文件(win7打开隐藏的文件夹)

方法/步骤分步阅读1进入win7系统桌面,鼠标双击打开我的电脑。2在我的电脑上方的导航条中点击工具选项。3在出现的下拉框中选择‘文件夹选项’进入。4在出现的文件夹选项界面中切换到‘查看’选项。5拉动下方的滚动条,找到‘隐藏受保护的操作系统文...

2025-11-29 05:51 off999

电脑怎样设置自动关机(笔记本电脑怎样设置自动关机)

电脑如何设置定时关机,方法1.点击电脑屏幕左下角的开始按钮,在所有程序里依次选择选择附件---系统工具,然后单击打开任务计划程序。2.点击打开任务计划程序后,在最右边的操作框里选择创建基本任务,然后在...

最近最新电影网(最新的电影资讯)

目前有许多观看最新电影的网站可供选择。其中一些知名的网站包括Netflix、AmazonPrimeVideo、Hulu、Disney+、AppleTV+和HBOMax。这些网站提供了广泛的电影...

h3c网络管理软件(h3c 网管)

1.可能无法登录2.H3C无法登录的原因可能是网络连接问题、账号密码错误、软件版本不兼容等。网络连接问题可能是由于网络故障、设备配置错误等导致无法正常登录。账号密码错误可能是输入错误或者账号被锁定...

qq轻聊版官网首页(qq轻聊版2019最新下载正版)
qq轻聊版官网首页(qq轻聊版2019最新下载正版)

qq是一款功能十分强大的软件,身边很多的朋友都在使用,但是还是有一些新手朋友对于这个软件不是非常的了解,今天就聊一聊关于qq轻聊版和qq有什么区别的问题,希望可以帮助到有需要的朋友。第一,轻聊版不带捆绑软件,轻聊版QQ主界面功能部分消失,看...

2025-11-29 03:51 off999

能破译wifi密码的软件(真正能破解wifi密码的手机软件)
  • 能破译wifi密码的软件(真正能破解wifi密码的手机软件)
  • 能破译wifi密码的软件(真正能破解wifi密码的手机软件)
  • 能破译wifi密码的软件(真正能破解wifi密码的手机软件)
  • 能破译wifi密码的软件(真正能破解wifi密码的手机软件)
平板电脑cpu性能天梯图(平板cpu天梯排行榜)

1、麒麟9000麒麟9000芯片是华为公司于2020年10月22日20:00发布的基于5nm工艺制程的手机Soc,采用1个A77,3个2.54GHzA77,4个2.04GHzA55的八核心设计,最...

怎么恢复备份的系统(恢复系统备份文件)

1.打开“控制面板”>“备份和还原(Windows7)”。2.点击右侧的“设置备份”。 3.选择储存备份的位置,如果要储存在共享文件夹或NAS上,请选择“保存在网络上(V).....

取消回复欢迎 发表评论: