「低门槛 手把手」python 装饰器(Decorators)原理说明
off999 2024-12-03 00:12 15 浏览 0 评论
本文目的是由浅入深地介绍python装饰器原理
装饰器(Decorators)是 Python 的一个重要部分
其功能是, 在不修改原函数(类)定义代码的情况下,增加新的功能
为了理解和实现装饰器,我们先引入2个核心操作:
1 必要的2个核心操作
1.1 核心操作1, 函数内部可以定义函数
def hi(name='world'):
print(f"hello, {name}")
def howdoyoudo(name2=name):
print(f"how do you do? {name2}")
howdoyoudo()
howdoyoudo('world')
hi("ytt") # 但是新函数还是存在的。
hi("ycy") # 但是新函数还是存在的。
try:
howdoyoudo()
except:
print("function not found")
在这个例子中,函数hi的形参name,默认为'world'
在函数内部,又定义了另一个函数 howdoyoudo,定义这个函数时,将形参name作为新函数的形参name2的默认值。
因此,在函数内部调用howdoyoudo()时,将以调用hi时的实参为默认值,但也可以给howdoyoudo输入其他参数。
上面的例子运行后输出结果为:
hello, ytt how do you do? ytt how do you do? world hello, ycy how do you do? ycy how do you do? worldfunction not found
这里新定义的howdoyoudo可以称作一个“闭包”。不少关于装饰器的blog都提到了这个概念,但其实没必要给它取一个多专业的名字。我们知道闭包是 函数内的函数 就可以了
1.2 核心操作2 函数可以作为对象被输入输出
1.2.1 核心操作2的前置条件,函数是对象
当我们进行 def 的时候,我们在做什么?
def hi():
print("hi")
return "world"
这时,hi函数,打印一个字符串,同时返回一个字符串。
但hi函数本身也是一个对象,一个可以执行的对象。执行的方式是hi()。
这里hi和hi()有本质区别,
hi 代表了这个函数对象本身
hi() 则是运行了函数,得到函数的返回值。
def hi(name='world'):
print(f"hello, {name}")
return name
msg = hi() # 运行函数,返回字符串,因此msg是个字符串
print(msg)
hello = hi # 将函数本身赋值给hello,此时hello是另一个函数,即使删除原函数hi,新函数hello也可以正常调用
del hi # 删除原函数hi
try:
hi()
except:
print("func hi not found")
hello("ycy") # 但是新函数还是存在的。
作为对比,可以想象以下代码
a = 'example'
b = a
del a
此时也是b存在,可以正常使用。
1.2.2函数作为输入
我们定义2个函数,分别实现自加1, 自乘2,
再定义一个函数double_exec,内容是将某个函数调用2次
在调用double_exec时,可以将函数作为输入传进来
def func1(n):
return n+1
def func2(n):
return n*2
def double_exec(f,x):
return f(f(x))
rst = double_exec(func1, 5)
print(rst)
rst = double_exec(func2, 3)
print(rst)
输出结果就是
7
27
1.2.3 函数作为输出
同样,也可以将函数作为输出
def select_func(i):
def func1(n):
return n+1
def func2(n):
return n*2
func_list = [func1, func2]
return func_list[i]
func = select_func(0) # 第1个函数
print(func(5))
func = select_func(1) # 第2个函数
print(func(5))
输出结果为
6
10
2 尝试构造装饰器
有了以上两个核心操作,我们可以尝试构造装饰器了。
装饰器的目的: 在不修改原函数(类)定义代码的情况下,增加新的功能
试想一下,现在有一个原函数
def original_function:
print("this is original function")
在不修改原函数定义代码的情况下,如果想进行函数内容的添加,可以将这个函数作为一个整体,添加到这样的包裹中:
def my_decorator(f):
def wrap_func():
print(f"before call {f.__name__}")
f()
print(f"after call {f.__name__}")
return wrap_func
new_function = my_decorator(original_function)
我们定义了一个my_decorator函数,这个函数进行了一种操作:
对传入的f,添加操作(运行前后增加打印),并把添加操作后的内容连同运行原函数的内容,一起传出
这个my_decorator,定义了一种增加前后打印内容的行为
调用my_decorator时,对这个行为进行了操作。
因此,new_function是一个在original_function上增加了前后打印行为的新函数
这个过程被可以被称作装饰。
例子中的对象 | 角色 | 说明 |
wrap | 闭包函数 | 重新定义了一种格式,这个格式可以任意的,是装饰器的真正内容 |
my_decorator | 装饰器 | 定义了按warp这种格式进行操作的函数 |
f | 待装饰函数(形参) | 在定义装饰器时,待装饰函数只是一个参数 |
original_function | 实际进行装饰的函数 | 一个具体的需要装饰的函数 |
new_function | 装饰后的函数 | 一个具体的装饰完成的函数 |
这里已经可以发现,装饰器本身对于被装饰的函数是什么,是不需要考虑的。装饰器本身只定义了一种装饰行为,这个行为是通过装饰器内部的闭包函数()进行定义的。
运行装饰前后的函数,可以清晰看到装饰的效果
def original_function():
print("this is original function")
def my_decorator(f):
def wrap_func():
print(f"before calling {f.__name__}")
f()
print(f"after calling {f.__name__}")
return wrap_func
new_function = my_decorator(original_function)
original_function()
print("#########")
new_function()
3装饰器定义的简写
我们复现一下实际要用装饰器的情况,我们往往有一种装饰器,想应用于很多个函数,比如
def my_decorator(f):
def wrap_func():
print(f"before calling {f.__name__}")
f()
print(f"after calling {f.__name__}")
return wrap_func
def print1():
print("num=1")
def print2():
print("num=2")
def print3():
print("num=3")
此时,如果我们想给3个print函数都加上装饰器,需要这么做
new_print1 = my_decorator(print1)
new_print2 = my_decorator(print2)
new_print3 = my_decorator(print3)
实际调用的时候,就需要调用添加装饰器的函数名了
new_print1()
new_print2()
new_print3()
当然,也可以赋值给原函数名
print1 = my_decorator(print1)
print1 = my_decorator(print2)
print3 = my_decorator(print3)
这样至少不需要管理一系列装饰前后的函数。
同时,在不需要进行装饰的时候,需要把
print1 = my_decorator(print1)
print1 = my_decorator(print2)
print3 = my_decorator(print3)
全部删掉。
事实上,这样并不方便,尤其对于更复杂的装饰器来说
为此,python提供了一种简写方式
def my_decorator(f):
def wrap_func():
print(f"before calling {f.__name__}")
f()
print(f"after calling {f.__name__}")
return wrap_func
@my_decorator
def print1():
print("num=1")
这个定义print1函数前的@my_decorator,相当于在定义完print1后,自动直接运行了
print1 = my_decorator(print1)
一个新的麻烦及解决办法
不论采用@my_decorator放在新函数前,还是显示地重写print1 = my_decorator(print1),都会存在一个问题:
装饰后的函数,名字改变了(其实不止名字,一系列的索引都改变了)
def print1():
print("num=1")
print(f"before decorate, function name: {print1.__name__}")
print1 = my_decorator(print1)
print(f"after decorate, function name: {print1.__name__}")
输出结果为:
before decorate, function name: print1 after decorate, function name: wrap_func
这个现象的原因是,装饰行为本身,是通过构造了一个新的函数(例子中是wrap_func函数)来实现装饰这个行为的,然后把这个修改后的函数赋给了原函数名。
这样,会导致我们预期的被装饰函数的一些系统变量(比如__name__)发生了变化。
对此,python提供了解决方案:
from functools import wraps # 导入一个系统工具
def my_decorator(f):
@wraps(f) # 在定义装饰行为函数的时候,增加一个新的装饰器
def wrap_func():
print(f"before calling {f.__name__}")
f()
print(f"after calling {f.__name__}")
return wrap_func
经过这个行为后,被装饰函数的系统变量问题被解决了
def print1():
print("num=1")
print(f"before decorate, function name: {print1.__name__}")
print1 = my_decorator(print1)
print(f"after decorate, function name: {print1.__name__}")
输出结果为
before decorate, function name: print1 after decorate, function name: print1
当然,如果你不需要使用一些系统变量,也可以不关注这个问题。
复杂一点的情况1 被装饰函数有输入输出
刚才的例子都比较简单,被装饰的函数是没有参数的。如果被装饰的函数有参数,只需要在定义装饰行为时(事实上,这个才更通用),增加(*args, **kwargs)描述即可
from functools import wraps
def my_decorator(f):
@wraps(f)
def wrap_func(*args, **kwargs): # 增加了输入参数
print(f"before calling {f.__name__}")
ret = f(*args, **kwargs) # 透传了输入参数,并记录了输出
print(f"after calling {f.__name__}") # line-after
return ret # 执行 "line-after" 后,将f的输出返回
return wrap_func
之前的描述中可以感受到,对于例子中的装饰行为(前后加打印),函数被装饰后,本质上是调用了新的装饰函数wrap_func。
因此,如果原函数需要有输入参数传递,只需要在wrap_func(或其他任意名字的装饰函数)定义时,也增加参数输入(*args, **kwargs),并将这些参数,原封不动地传给待装饰函数f。
这种定义装饰行为的方式更具有普遍性,忘记之前的定义方式吧
我们试一下
@my_decorator
def my_add(x, y):
return x + y
n = my_add(1, 3)
print(n)
输出
before calling my_add after calling my_add 4
这里需要注意的是,如果按照以下的方式定义装饰器
from functools import wraps
def my_decorator(f):
@wraps(f)
def wrap_func(*args, **kwargs): # 增加了输入参数
print(f"before calling {f.__name__}")
return f(*args, **kwargs) # 透传了输入参数,并记录了输出
print(f"after calling {f.__name__}") # line-after
return wrap_func
那么以下语句将不会执行
print(f"after calling {f.__name__}") # line-after
因为装饰后实际的函数wrap_func(虽然名字被改成了原函数,系统参数也改成了原函数),运行到return f(*args, **kwargs) 的时候已经结束了
复杂一点的情况2 装饰器有输入
因为装饰器my_decorator本身也是可以输入的,因此,只需要在定义装饰器时,增加参数,并在后续函数中使用就可以了,比如
from functools import wraps
def my_decorator(f, msg=""):
@wraps(f)
def wrap_func(*args, **kwargs): # 增加了输入参数
print(f"{msg}, before calling {f.__name__}")
return f(*args, **kwargs) # 透传了输入参数,并记录了输出
print(f"{msg}, after calling {f.__name__}") # line-after
return wrap_func
此时装饰器已经可以有输入参数了
def my_add(x, y):
return x + y
my_add = my_decorator(my_add, 'yusheng')
n = my_add(1, 3)
print(n)
输出
yusheng, before calling my_add yusheng, after calling my_add 4
你可能发现,为什么不用简写版的方法了
@my_decorator(msg='yusheng')
def my_add(x, y):
return x + y
n = my_add(1, 3)
print(n)
因为以上代码会报错!!
究其原因,虽然
@my_decorator
def my_add(x, y):
return x + y
等价于
def my_add(x, y):
return x + y
my_add = my_decorator(my_add)
但是,
@my_decorator(msg='yusheng')
def my_add(x, y):
return x + y
并不等价于
def my_add(x, y):
return x + y
my_add = my_decorator(my_add, msg='yusheng')
这本身和@语法有关,使用@my_decorator时,是系统在应用一个以单个函数作为参数的闭包函数。即,@是不能带参数的。
但是你应该发现了,之前的@wraps(f)不是带参数了吗?请仔细观察以下代码
def my_decorator_with_parma(msg='')
def my_decorator(f):
@wraps(f)
def wrap_func(*args, **kwargs): # 增加了输入参数
print(f"{msg}, before calling {f.__name__}")
return f(*args, **kwargs) # 透传了输入参数,并记录了输出
print(f"{msg}, after calling {f.__name__}") # line-after
return wrap_func
return my_decorator
通过一层嵌套,my_decorator_with_parma本质上是返回了一个参数仅为一个函数的函数(my_decorator),但因为my_decorator对my_decorator_with_parma来说是一个闭包,my_decorator_with_parma是可以带参数的。(这句话真绕)
通过以上的定义,我们再来看
@my_decorator_with_parma(msg='yusheng')
def my_add(x, y):
return x + y
可以这么理解,my_decorator_with_parma(msg='yusheng')的结果是原来的my_decorator函数,同时,因为my_decorator_with_parma可以传参,参数实际上是参与了my_decorator的(因为my_decorator对my_decorator_with_parma是闭包), my_decorator_with_parma(msg='yusheng') 全等于 一个有参数参加的my_decorator
因此,以上代码等价于有参数msg传递的
@my_decorator
def my_add(x, y):
return x + y
比较绕,需要理解一下,或者干脆强记这种范式:
from functools import wraps
def my_decorator(msg=''): # 名字改一下
def inner_decorator(f): # 名字改一下
@wraps(f)
def wrap_func(*args, **kwargs): # 增加了输入参数
print(f"{msg}, before calling {f.__name__}")
ret = f(*args, **kwargs) # 透传了输入参数,并记录了输出
print(f"{msg}, after calling {f.__name__}") # line-after
return ret
return wrap_func
return inner_decorator
以上范式包含函数的输入输出、装饰器的输入,可以应对大部分情况了。
实验一下:
@my_decorator(msg='yusheng')
def my_add(x, y):
return x + y
my_add(1, 2)
输出
yusheng, before calling my_add yusheng, after calling my_add
有用的函数装饰器例子
统计耗时的日志
from functools import wraps
import datetime
def log(output_path=None): # 名字改一下
def decorator(f): # 名字改一下
@wraps(f)
def wrap_func(*args, **kwargs): # 增加了输入参数
now = datetime.datetime.now()
msg = now.strftime("%Y-%m-%d %H:%M:%S") # 运行时刻
msg += f" {f.__name__}()\n" # 运行的函数名
ret = f(*args, **kwargs) # 透传了输入参数,并记录了输出
aft = datetime.datetime.now()
time_cost = aft - now
ms = time_cost.total_seconds() * 10**3 # 毫秒
msg += now.strftime("%Y-%m-%d %H:%M:%S")
msg += f" {f.__name__}() return, cost {ms} ms"
if output_path is None:
print(msg)
else:
print(f"print logs into {output_path}")
with open(output_path, 'a+') as fp:
fp.write(msg + '\n')
return wrap_func
return decorator
以上是一个log装饰器,利用datetime统计了函数的耗时,
并且,装饰器可以进行输出文件操作,如果给出了文件路径,则输出文件,否则就打印。
利用这个装饰器,可以灵活地进行耗时统计
@log()
def my_sum(x, y):
s = 0
for i in range(x, y+1):
s += i
return s
my_sum(1, 9999999)
不设置输出文件地址,则打印。运行结果为:
2021-12-03 10:01:52 my_sum() 2021-12-03 10:01:52 my_sum() return, cost 506.3299999999999 ms
也可以输出到文件
@log('test.log')
def my_sum(x, y):
s = 0
for i in range(x, y+1):
s += i
return s
my_sum(1, 9999999)
输出结果为
print logs into test.log
同时在当前目录生成了一个test.log 文件,内容为:
2021-12-03 10:03:17 my_sum() 2021-12-03 10:03:17 my_sum() return, cost 461.813 ms
从装饰函数到装饰类
以上的装饰器都是以函数形式出现的,但我们可以稍做改写,将装饰器以类的形式实现。
from functools import wraps
import datetime
class Log:
def __init__(self, path=None):
self._output = path
def __call__(self, f): # 相当于原来的 inner_decorator
@wraps(f)
def wrap_func(*args, **kwargs): # 增加了输入参数
now = datetime.datetime.now()
msg = now.strftime("%Y-%m-%d %H:%M:%S") # 运行时刻
msg += f" {f.__name__}()\n" # 运行的函数名
ret = f(*args, **kwargs) # 透传了输入参数,并记录了输出
aft = datetime.datetime.now()
time_cost = aft - now
ms = time_cost.total_seconds() * 10**3 # 毫秒
msg += now.strftime("%Y-%m-%d %H:%M:%S")
msg += f" {f.__name__}() return, cost {ms} ms"
if self._output is None:
print(msg)
else:
print(f"print logs into {self._output}")
with open(self._output, 'a+') as fp:
fp.write(msg + '\n')
return wrap_func
这个装饰器类Log 上个例子里的装饰器函数log功能是一样的,同时,这个装饰器类还可以作为基类被其他继承,进一步增加功能。
原文 http://www.cnblogs.com/yushengchn/p/15636944.html
- 上一篇:python小课堂29 - 进阶必修之装饰器
- 下一篇:python装饰器示例
相关推荐
- Python开发管理神器--UV 使用教程:从安装到项目管理
-
UV是一个用Rust编写的高效Python包和项目管理工具,提供了比传统工具更快的速度和更强的功能。本文将指导你如何使用UV从安装到运行一个Python项目。重点:它可以独立安装,可...
- python入门-Day 26: 优化与调试(python优化方法)
-
优化与调试,内容包括处理模型运行中的常见问题(内存、依赖)、调整参数(如最大生成长度),以及练习改进Day25的文本生成结果。我会设计一个结构化的任务,帮助你掌握优化和调试技巧,同时提升模型性能...
- Python安装(python安装发生严重错误)
-
Windows系统1.安装python1.1下载Python安装包打开官方网站:https://www.python.org/downloads/点击"DownloadPython3.1...
- UV 上手指南:Python 项目环境/包管理新选择
-
如果你是一位Python开发者,曾因pipinstall的安装速度而感到沮丧,或者希望Python的依赖管理能够像Node.js那样高效顺滑,那么UV可能正是你所需要的工具。UV...
- uv——Python开发栈中的高效全能小工具
-
每天写Python代码的同学,肯定都离不开pip、virtualenv、Poetry等基础工具,但是对这些工具可能是又恨又离不开。那么有什么好的替代呢,虫虫今天就给大家介绍一个替代他们的小工具uv,一...
- 使用Refurb让你的Python代码更加优秀
-
还在担心你写的Python代码是否专业,是否符合规范吗?这里介绍一个Python代码优化库Refurb,使用它可以给你的代码提出更加专业的建议,让你的代码更加的可读,规范和专业。下面简单介绍这个库的使...
- 【ai】dify+python开发AI八字排盘插件
-
Dify插件是什么?你可以将Dify插件想象成赋予AI应用增强感知和执行能力的模块化组件。它们使得将外部服务、自定义功能以及专用工具以”即插即用”的简洁方式集成到基于Dify构建的AI...
- 零基础AI开发系列教程:Dify升级指南
-
Dify近期发布很是频繁,基本两三天一个版本。值得肯定的是优化和改进了很多问题,但是官方的升级文档有点分散,也有点乱。我这里整理了一个升级文档供大家参考,如果还没有升级到新版本的小伙伴,可以按照我的文...
- 升级到PyTorch 2.0的技巧总结(如何更新pytorch版本)
-
来源:DeepHubIMBA本文约6400字,建议阅读12分钟在本文将演示PyTorch2.0新功能的使用,以及介绍在使用它时可能遇到的一些问题。PyTorch2.0发布也有一段时间了,大家...
- dify 1.6.0版本发布解读:引入MCP支持与多项核心优化升级指南详解
-
2025年7月10日,dify发布了1.6.0版本。这是一次功能深度升级与性能优化的综合性更新,标志着dify在技术规范支持、操作体验以及系统稳定性方面迈出了重要的一步。本文将从核心新特性、功能增强、...
- Python教程(十四):列表(List)(python列表方法总结)
-
昨天,我们学习了变量作用域,理解了局部和全局变量的概念。今天,我们将开始探索Python的数据结构,从最常用的**列表(List)**开始。列表是Python中最灵活、最常用的数据结构,它可以存储不同...
- Python列表操作(python列表有哪些基本操作)
-
Python添加列表4分钟阅读在Python操作列表有各种方法。例如–简单地将一个列表的元素附加到for循环中另一个列表的尾部,或使用+/*运算符、列表推导、extend()和i...
- Python字符串变形术:replace替换+join连接,10分钟掌握核心操作
-
字符串替换魔法:replace()实战手册核心价值:一键更新文本内容,精准控制替换范围#基础替换:Python变Javas="hellopython"print(s.re...
- python集合set() 数据增册改查统计序循常用方法和数学计算
-
概念特点定义和创建常用操作集合间的关系集合数学操作集合生成式遍历概念:可变、无序、不重复的序列数据容器特点:无序,不支持下标唯一性,可以删除重复数据可修改定义和创建赋值法:语法:s={x,....
- Python列表方法append和extend的区别
-
在Python编程中,列表是一种非常常用的数据结构。而列表有两个方法append()和extend(),它们看起来有点相似,但实际上有着明显的区别。今天咱们就来好好唠唠这俩方法到底有啥不同。基本区别a...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)